Image

Hvordan er menneskets hjerte

Det menneskelige hjerte er et firekammeret muskulært organ i struktur, dets funktioner er at tvinge blod ind i kredsløbssystemet, der begynder og slutter med hjertet. I løbet af 1 minut er det i stand til at pumpe 5 til 30 liter. Den pumper som 8.000 liter blod pr. Dag, som en pumpe, som i løbet af 70 år vil udgøre 175 millioner liter.

anatomi

Hjertet er placeret bag brystbenet, lidt forskudt til venstre - ca. 2/3 er i venstre side af brystet. Munden af ​​luftrøret, hvor den forgrener sig i to bronchi, er placeret ovenfor. Bag den er esophagus og nedadgående del af aorta.

Det menneskelige hjerte anatomi ændres ikke med alderen, dets struktur hos voksne og børn adskiller sig ikke (se billede). Men lokationen ændrer sig noget, og hos nyfødte er hjertet helt i venstre side af brystet.

Den gennemsnitlige menneskelige hjertemasse er 330 gram hos mænd, 250 gram hos kvinder. I form ligner dette organ en strømlinet kegle med en bred base, som er en næve. Dens forreste del ligger bag brystbenet. Og den nedre del er omgivet af membranen - det muskulære septum, som adskiller brysthulen fra maveskavheden.

Formen og størrelsen af ​​hjertet bestemmes af alder, køn, eksisterende myokardie sygdomme. I gennemsnit når længden i en voksen 13 cm, og bredden af ​​basen er 9-10 cm.

Størrelsen af ​​hjertet afhænger af alder. Børns hjerte er mindre end for en voksen, men dens relative vægt er højere, og dens vægt i en nyfødt er ca. 22 g.

Hjertet er drivkraften til en persons blodcirkulation, som det fremgår af diagrammet, et hul organ (se figur), delt i halvdelen af ​​en muskulær skillevæg og halvdelene opdelt i atria / ventrikler.

Atria er mindre i størrelse, adskilt fra ventriklerne med ventiler:

  • på venstre side - toskal (mitral);
  • til højre - tricuspid (tricuspid).

Fra venstre ventrikel går blod ind i aorta og passerer derefter gennem en stor kredsløb af blodcirkulationen (BPC). Fra højre - i lungestammen går der gennem en lille cirkel (ICC).

Hjerte skaller

Det menneskelige hjerte er indesluttet i perikardiet, som består af 2 lag:

  • ekstern fibrøs, forhindrer overstretching;
  • intern, som består af to ark:
    • visceral (epicardium), som er fusioneret med hjertevæv;
    • periental, splejset med fibrøst væv.

Mellem de pericardiums viscerale og parientale ark er et rum fyldt med perikardvæske. Dette anatomiske træk ved strukturen af ​​det menneskelige hjerte er designet til at afbøde mekaniske chok.

I figuren, hvor hjertet er vist i afsnittet, kan du se, hvad det har strukturen, hvad det består af.

De følgende lag kendetegnes:

  • myokardiet;
  • epikard, lag støder op til myokardium;
  • endokardium, der består af det fibrøse ydre perikardium og det parente lag.

Muskulatur af hjertet

Væggene består af striated muskulatur, inderveret af det vegetative nervesystem. Muskler er repræsenteret af to typer fibre:

  • kontraktile - bulk
  • ledende elektrokemisk impuls.

Det non-stop kontraktile arbejde i det menneskelige hjerte er tilvejebragt af hjertemuren og pacemakernes automatik.

  • Atriumvæggen (2-5 mm) består af 2 muskellag - peberfibre og langsgående.
  • Hjertets ventrikelvæg er stærkere, den består af tre lag, der skærer i forskellige retninger:
    • et lag af skråtfibre
    • ringfibre;
    • langsgående lag af papillære muskler.

Koordinering af hjertekamrene udføres ved hjælp af et ledende system. Tykkelsen af ​​myokardiet afhænger af den belastning der falder på den. Væggen i venstre ventrikel (15 mm) er tykkere end højre (ca. 6 mm), da den skubber blod ind i CCL, udfører mere arbejde.

Muskelfibre, som det kontraktile væv i det menneskelige hjerte består af, modtager blod rig på ilt gennem koronarbeholderne.

Myokardiet lymfesystemet er repræsenteret af et netværk af lymfatiske kapillærer placeret i tykkelsen af ​​muskellagene. Lymfekar gå langs koronarårene og arterierne, der fodrer myokardiet.

Lymfeet strømmer ind i lymfeknuderne, der ligger nær aortabuen. Derfra strømmer lymfevæske ind i brystkanalen.

Toldcyklus

Med hjertefrekvens (hjertefrekvens) på 70 pulser / minut bliver arbejdscyklussen afsluttet i 0,8 sekunder. Blod udvises fra hjertets ventrikler under en sammentrækning, som kaldes systole.

Systole tager tid:

  • atria - 0,1 sekunder, derefter afslapning 0,7 sekunder;
  • ventrikler - 0,33 sekunder, derefter diastol 0,47 sekunder.

Hver takt af pulsen består af to systoler - atria og ventrikler. I ventrikulær systole skubbes blod i cirkler med blodcirkulation. Under atriell kompression kommer op til 1/5 af deres fulde volumen ind i ventriklerne. Værdien af ​​atrielsystolen stiger, når hjertefrekvensen accelererer, når ventriklerne på grund af sammentrækningen af ​​atrierne fylder med blod.

Når atrierne slapper af, passerer blodet:

  • i det højre atrium fra hule vener;
  • i venstre - fra lungeåre.

Det menneskelige kredsløbssystem er udformet således, at inhalation fremmer blodstrømmen til atrierne, da der skabes en sugekraft i hjertet på grund af trykforskellen. Denne proces sker, ligesom i luften kommer ind i bronkierne, når de trækker vejret ind.

Atriell kompression

Atria-kontrakten, ventriklerne virker ikke endnu.

  • Ved det første øjeblik er hele myokardiet afslappet, ventilerne sager.
  • Da atriell kompression stiger, bliver blod udvist i ventriklerne.

Atriel sammentrækning slutter, når impulsen når den atrioventrikulære (AV) knude, og ventrikulær sammentrækning begynder. I slutningen af ​​atrialsystolen lukkes ventilerne, de indre akkorder (sener) forhindrer divergensen af ​​ventilfolierne eller deres inversion ind i hjertets hulrum (prolaps fænomen).

Kompression af ventriklerne

Atrierne er afslappet, kun ventrikelkontrakten, udviser det blodvolumen, de indeholder:

  • venstre - i aorta (BPC);
  • højre - i lungestammen (ICC).

Tiden for atriell aktivitet (0,1 s) og ventrikulært arbejde (0,3 s) ændres ikke. Forhøjelsen i hyppigheden af ​​sammentrækninger opstår på grund af et fald i varigheden af ​​resten af ​​hjerteområderne - denne tilstand kaldes diastol.

Total pause

I fase 3 er muskulaturen i alle hjertekamre afslappet, ventilerne er afslappet, og blod fra atrierne strømmer frit ind i ventriklerne.

Ved slutningen af ​​fase 3 er ventriklerne 70% fyldt med blod. Hvor fuldt blodet er fyldt med ventriklerne i diastol, afhænger kraften af ​​sammentrækning af muskelvæggene under systolen.

Hjerte lyder

Myokardiumets kontraktile aktivitet ledsages af lydvibrationer, kaldet hjertetoner. Disse lyde er kendetegnet ved auscultation (lytter) med et stetoskop.

Der er hjertetoner:

  1. systolisk - lang døv, der opstår:
    1. ved sammenbrud af atrioventrikulære ventiler;
    2. udstedt af vækkene i ventriklerne;
    3. spænding af hjerte akkorder;
  2. diastolisk - høj, forkortet, skabt af sammenbrud af lungeklappens ventiler, aorta.

Automatismesystem

En persons hjerte arbejder hele sit liv som et enkelt system. Koordinerer arbejdet i det menneskelige hjerte system, der består af specialiserede muskelceller (cardiomycetes) og nerver.

  • det autonome nervesystem
    • vagus nerve sænker rytmen;
    • sympatiske nerver accelerere myokardiet.
  • centre for automatisme.

Centret for automatisme kaldes en struktur bestående af kardiomyceter, der indstiller hjertefrekvensen. Centret for automatisering af den første ordre er en sinus node. På diagrammet af strukturen af ​​det menneskelige hjerte ligger den på det punkt, hvor den overlegne vena cava går ind i højre atrium (se underskrifter).

Sinusnoden indstiller den normale rytme af atria 60-70 imp./minute, så bliver signalet holdt i atrioventrikulærknuden (AV), benene til His - automatsystemet med 2-4 størrelsesordener, der indstiller rytmen med en lavere puls.

Yderligere centre for automatisme er tilvejebragt i tilfælde af svigt eller svigt i sinuspacemakeren. Arbejdet med centre for automatisme med udførelse af kardiomycetes tilvejebringes.

Udover ledende er der:

  • arbejdskardiomycetes - udgør størstedelen af ​​myokardiet
  • sekretoriske cardiomycetes - de danner et natriuretisk hormon.

Sinus node - hjertets hovedkontrolcenter med en pause i sit arbejde i mere end 20 sekunder udvikler hjernehypoxi, synkope, Morgagni-Adams-Stokes syndrom, som vi beskrevet i artiklen "Bradycardia".

Hjertets og blodkarens arbejde er en kompleks proces, og denne artikel omhandler kun kort hjertefunktionens karakteristika. Lær mere om fysiologi af det menneskelige hjerte, blodcirkulation funktioner, læseren vil være i stand til i materialet på webstedet.

Hjertet

Hjertet er et af de mest perfekte organer i menneskekroppen, som blev skabt med særlig tanke og grundighed. Han har fantastiske kvaliteter: fantastisk magt, den sjældneste utrættelighed og uendelig evne til at tilpasse sig det ydre miljø. Ikke underligt mange mennesker kalder hjertet en menneskelig motor, for det er faktisk. Hvis du bare tænker på det enorme arbejde i vores "motor", så er det en fantastisk krop.

Hvad er hjertet og hvad er dets funktioner?

Hovedfunktionen i hjertet er at give konstant og kontinuerlig blodgennemstrømning i hele kroppen. Derfor er hjertet en pumpe, som cirkulerer blod gennem hele kroppen, og det er dets hovedfunktion. På grund af hjertets arbejde går blod ind i alle dele af kroppen og organerne, nærer vævene med næringsstoffer og ilt, samtidig med at blodet selv næres med ilt. Med motion, øget hastighed (løb) og stress - hjertet bør producere en øjeblikkelig reaktion og øge hastigheden og antallet af sammentrækninger.

Med hvad hjertet er og hvad dets funktioner er - vi er blevet bekendt, lad os nu overveje hjertets struktur.

Hjertestruktur

Til en begyndelse er det værd at sige, at det menneskelige hjerte er i venstre side af brystet. Det er vigtigt at bemærke, at i verden er der en gruppe af unikke mennesker, hvis hjerte ikke er placeret på venstre side som normalt, men på højre side har sådanne mennesker som regel en spegelstruktur af organismen som følge heraf hjertet er i modsat retning til siden.

Hjertet består af fire separate kamre (hulrum):

  • Venstre atrium;
  • Højre atrium
  • Venstre ventrikel;
  • Højre ventrikel
Disse kameraer er opdelt af partitioner.

For strømmen af ​​blod svarer til de ventiler, der er i hjertet. I venstre atrium indbefattes lungerne i højre atrium - hul (overlegne vena cava og inferior vena cava). Fra venstre og højre ventricles ud lungekroppen og den stigende aorta.

Den venstre ventrikel med venstre atrium adskiller mitralventilen (bicuspidventil). Tricuspid ventilen adskiller højre ventrikel og højre atrium. Også i hjertet er lunge- og aortaklapperne, som er ansvarlige for blodstrømmen fra venstre og højre ventrikel.

Kredsløb af blodcirkulationen i hjertet

Som det er kendt, producerer hjertet 2 typer blodcirkulationscirkler - dette er igen en stor cirkulationscirkel og en lille. Den systemiske cirkulation starter fra venstre ventrikel og slutter i højre atrium.

Opgaven af ​​en stor kredsløb af blodcirkulation er at forsyne blodet til alle organer i kroppen såvel som direkte til lungerne selv.

Lungcirkulationen stammer fra højre ventrikel og ender i venstre atrium.

Hvad angår den lille cirkel af blodcirkulation, er han ansvarlig for gasudvekslingen i lungalveolerne.

Det er faktisk kort, med hensyn til cirkulationerne af blodcirkulationen.

Hvad gør hjertet?

Hvad er hjertet til? Som du allerede har forstået, producerer hjertet kontinuerlig blodgennemstrømning i hele kroppen. Tre hundrede gram muskel, elastisk og mobil - er en konstant arbejdende suge- og leveringspumpe, hvor den højre halvdel tager blod fra venerne ind i kroppen og sender det til lungerne til berigelse med ilt. Så kommer blodet fra lungerne ind i venstre halvdel af hjertet og med en vis indsats målt ved blodtrykniveauet frigives blod.

Cirkulation af blod under omløb forekommer ca. 100 tusinde gange om dagen, i en afstand på over 100 tusind kilometer (dette er den samlede længde af menneskets kar). For året når antallet af hjertekontraktioner en astronomisk størrelse - 34 millioner. I løbet af denne tid pumpede 3 millioner liter blod. Kæmpe arbejde! Hvilke fantastiske reserver er gemt i denne biologiske motor!

Det er interessant at vide: en reduktion forbruger energi, der er tilstrækkelig til at løfte en vægt på 400 g til en højde på en meter. Desuden bruger et roligt hjerte kun 15% af al den energi, den har. For hårdt arbejde stiger denne tal til 35%.

I kontrast til musklerne i skeletsmusklerne, som kan holde i timevis i ro, arbejder de kontraktile myokardceller utrætteligt i mange år. Dette giver anledning til ét vigtigt krav: Luftforsyningen skal være uafbrudt og optimal. Hvis der ikke er næringsstoffer og ilt - vil cellen dø øjeblikkeligt. Det kan ikke stoppe og vente på forsinkede doser af livgivende gas og glukose, da det ikke skaber de nødvendige reserver til den såkaldte manøvre. Hendes liv er en hylde af frisk blod.

Men kan en blodrig muskel sulte? Ja, det kan. Faktum er, at myokardiet ikke foder på blod, som er fyldt med dets hulrum. Dens forsyning med ilt og essentielle næringsstoffer går gennem to "rørledninger", som forgrener sig fra aorta-basen og kroner musklerne som en krone (dermed deres navn "coronary" eller "coronary"). De udgør igen et tæt netværk af kapillærer, som fodrer sit eget væv. Der er mange ekstra grene - collaterals, som duplikerer de vigtigste fartøjer og går parallelt med dem - noget som grene og kanaler af en stor flod. Derudover er bassinerne i de vigtigste "blod floder" ikke opdelt, men forbundet i en hel takket være de tværgående skibe - anastomoserne. Skulle en katastrofe ske: blokering eller brud - blod vil skynde sig langs reservekanalen, og tabet er mere end kompenseret. Således har naturen ikke blot tilvejebragt pumpemekanismens skjulte kraft, men også et perfekt system til erstatning af blodforsyningen.

Denne proces, der er fælles for alle skibe, er særlig patologisk for kranspulsårerne. De er trods alt meget tynde, de største af dem er ikke bredere end et strå, hvor de drikker en cocktail. Spiller en rolle og træk ved blodcirkulationen i myokardiet. Mærkeligt nok, i disse intensivt cirkulerende arterier, stopper blodet periodisk. Forskere forklarer denne ulighed som følger. I modsætning til andre skibe påvirkes kranspulsårerne af to kræfter, som er modsatte af hinanden: Pulshovedet af blod, som strømmer gennem aortaen, og det modtryk, der opstår ved sammentrækning af hjertemusklen og har tendens til at skubbe blodet tilbage til aorta. Når de modsatte kræfter bliver lige, stopper strømmen for et delt sekund. Denne gang er nok for en del af det trombogendannende materiale at udfælde fra blodet. Derfor udvikler koronar aterosklerose mange år, før det opstår i andre arterier.

Hjertesygdom

Nu kardiovaskulære sygdomme angriber mennesker i et aktivt tempo, især for de ældre. Millioner af dødsfald om året - dette er resultatet af hjertesygdomme. Dette betyder: tre patienter ud af fem dør direkte fra hjerteanfald. Statistikker bemærker to alarmerende fakta: tendens til vækst af sygdomme og deres foryngelse.

Hjertesygdomme omfatter 3 grupper af sygdomme, der påvirker:

  • Hjerteklapper (medfødte eller erhvervede hjertefejl);
  • Hjerte fartøjer;
  • Vævskaller af hjertet.
Åreforkalkning. Dette er en sygdom, der påvirker karrene. Ved aterosklerose er der en fuldstændig eller delvis overlapning af blodkar, som også påvirker hjerteets arbejde. Det er denne sygdom, der er den hyppigste hjertesygdom. Hjertets indre vægge har en overflade, der er dækket af kalkaflejringer, forsegling og indsnævring af livsgivende kanalers lumen (på latin betyder "infarkt" "låst"). For myokardiet er blodkarets elasticitet meget vigtig, da en person lever i en lang række motortilstande. For eksempel går du afslappet og kigger på vinduerne i forretningerne, og pludselig husker du, at du skal være tidlig hjemme, den bus du har brug for, kører op til et stop, og du skynder dig fremad for at fange den. Som et resultat begynder hjertet at "løbe" sammen med dig, dramatisk ændre arbejdshastigheden. De fartøjer, der fodrer myokardiet, udvides i dette tilfælde - strømmen skal svare til det øgede energiforbrug. Men i en patient med aterosklerose gør kalkplasteringen karrene hjerte til en sten, da det ikke reagerer på hans ønsker, da han ikke er i stand til at springe så meget arbejdende blod til at fodre myokardiet, som han har brug for, når han kører. Dette er tilfældet med en bil, hvis hastighed ikke kan øges, hvis tilstoppede rørledninger ikke leverer tilstrækkelig mængde "benzin" til forbrændingskamrene.

Hjertesvigt. Under dette udtryk forstås en sygdom, hvor der opstår et kompleks af lidelser på grund af et fald i myokardial kontraktilitet, hvilket er en konsekvens af udviklingen af ​​stillestående processer. Ved hjertesvigt forekommer blodstagnation i både den lille og store omsætning.

Hjertefejl. I tilfælde af hjertesvigt kan der opstå fejl i ventilapparatets funktion, hvilket kan medføre hjertesvigt. Hjertefeil er både medfødt og erhvervet.

Hjertets arrytmi. Denne patologi i hjertet er forårsaget af en krænkelse af rytmen, frekvensen og sekvensen af ​​hjerteslag. Arytmi kan føre til en række hjerte uregelmæssigheder.

Angina pectoris Med angina opstår der ilthævelse i hjertemusklen.

Myokardieinfarkt. Dette er en af ​​de typer af koronar hjertesygdom, hvor der er en absolut eller relativ utilstrækkelig blodtilførsel til myokardiet.

Strukturen og princippet i hjertet

Hjertet er et muskulært organ hos mennesker og dyr, som pumper blod gennem blodkarrene.

Hjertefunktion - hvorfor har vi brug for et hjerte?

Vores blod giver hele kroppen med ilt og næringsstoffer. Derudover har den også en rensende funktion, der hjælper med at fjerne metabolisk affald.

Hjertets funktion er at pumpe blod gennem blodkarrene.

Hvor meget blod gør en persons hjertepumpe?

Det menneskelige hjerte pumper på en dag fra 7000 til 10.000 liter blod. Det drejer sig om 3 millioner liter om året. Det viser sig op til 200 millioner liter i livet!

Mængden af ​​pumpet blod inden for et minut afhænger af den aktuelle fysiske og følelsesmæssige belastning - jo større belastningen er, jo mere blod kroppen har brug for. Så hjertet kan passere gennem sig selv fra 5 til 30 liter om et minut.

Kredsløbssystemet består af omkring 65 tusind skibe, deres samlede længde er omkring 100 tusind kilometer! Ja, vi er ikke forseglede.

Kredsløbssystemet

Kredsløbssystem (animation)

Det menneskelige kardiovaskulære system er dannet af to cirkler af blodcirkulation. Med hvert hjerteslag bevæger blodet i begge cirkler på én gang.

Kredsløbssystemet

  1. Deoxygeneret blod fra den overlegne og ringere vena cava går ind i højre atrium og derefter ind i højre ventrikel.
  2. Fra højre ventrikel skubbes blod ind i lungekroppen. Pulmonalarterierne trækker blod direkte ind i lungerne (før lungekapillærerne), hvor det modtager ilt og frigiver kuldioxid.
  3. Efter at have modtaget tilstrækkelig ilt, vender blodet tilbage til hjerteets venstre atrium gennem lungerne.

Great Circle of Blood Circulation

  1. Fra venstre atrium flytter blodet ind i venstre ventrikel, hvorfra det yderligere pumpes ud gennem aorta ind i det systemiske kredsløb.
  2. Efter at have passeret en vanskelig vej, kommer blod gennem de hule vener igen til højre i hjertet af hjertet.

Normalt er mængden af ​​blod udstødt fra hjertets ventrikler med hver sammentrækning det samme. Således strømmer et lige antal blod samtidigt i de store og små cirkler.

Hvad er forskellen mellem vener og arterier?

  • Ærene er designet til at transportere blod til hjertet, og arteriernes opgave er at levere blod i modsat retning.
  • Blodtrykket i venerne er lavere end i arterierne. I overensstemmelse hermed skelnes arterierne af væggene med større elasticitet og tæthed.
  • Arterier mætter det "friske" væv, og venerne tager det "spildte" blod.
  • I tilfælde af vaskulær skade kan arteriel eller venøs blødning skelnes af blodets intensitet og farve. Arterial - stærk, pulserende, slår "springvand", blodets farve er lys. Venøs blødning med konstant intensitet (kontinuerlig strømning), blodets farve er mørk.

Anatomisk struktur af hjertet

Vægten af ​​en persons hjerte er kun omkring 300 gram (i gennemsnit 250g for kvinder og 330g for mænd). På trods af den relativt lave vægt er dette uden tvivl hovedmuskel i menneskekroppen og grundlaget for dets livsvigtige aktivitet. Størrelsen af ​​hjertet er faktisk omtrent lig med en persons knytnæve. Atleter kan have et hjerte en og en halv gange større end en almindelig person.

Hjertet er placeret i midten af ​​brystet på niveauet af 5-8 hvirvler.

Normalt ligger den nederste del af hjertet hovedsageligt i venstre halvdel af brystet. Der er en variant af medfødt patologi, hvor alle organer er spejlet. Det kaldes transponering af de indre organer. Lungen, hvorigennem hjertet ligger (normalt venstre), har en mindre størrelse i forhold til den anden halvdel.

Hjertens overflade ligger tæt på rygsøjlen, og fronten er pålideligt beskyttet af brystbenet og ribbenene.

Det menneskelige hjerte består af fire uafhængige hulrum (kamre) divideret med partitioner:

  • to øverste venstre og højre atria;
  • og to nedre venstre og højre ventrikler.

Hjertets højre side omfatter højre atrium og ventrikel. Den venstre halvdel af hjertet er repræsenteret af henholdsvis venstre ventrikel og atrium.

De nedre og øvre hule vener går ind i højre atrium, og lungevene går ind i venstre atrium. De pulmonale arterier (også kaldet pulmonale stammen) udgangen fra højre ventrikel. Fra venstre ventrikel stiger den stigende aorta.

Hjertevægsstruktur

Hjertevægsstruktur

Hjertet har beskyttelse mod overstretching og andre organer, der kaldes perikardiet eller perikardieposen (en slags kappe, hvor orgelet er lukket). Det har to lag: det ydre tætte bindemiddel, kaldet pericardiums fibrøse membran og den indre (perikardiale serøse).

Dette efterfølges af et tykt muskellag - myokardiet og endokardiet (tyndt bindevæv indre membran i hjertet).

Selve hjertet består således af tre lag: epikardiet, myokardiet, endokardiet. Det er sammentrækningen af ​​myokardiet, der pumper blod gennem kroppens kar.

Vægrene i venstre ventrikel er cirka tre gange større end væggene til højre! Denne kendsgerning forklares ved, at funktionen af ​​venstre ventrikel består i at skubbe blod ind i det systemiske kredsløb, hvor reaktionen og trykket er meget højere end i de små.

Hjerteventiler

Hjerteventil enhed

Særlige hjerteventiler giver dig mulighed for konstant at holde blodgennemstrømningen i den rigtige retning (ensrettet retning). Ventilerne åbner og lukker en efter en, enten ved at lade i blod eller blokere vejen. Interessant er alle fire ventiler placeret i samme plan.

Mellem højre atrium og højre ventrikel er en tricuspidventil. Den indeholder tre specielle plader-sash, der er i stand under sammentrækning af højre ventrikel for at give beskyttelse mod omvendt strøm (opblødning) af blod i atriumet.

Tilsvarende fungerer mitralventilen, kun den er placeret i venstre side af hjertet og er bicuspid i sin struktur.

Aortaklappen forhindrer udstrømning af blod fra aorta i venstre ventrikel. Interessant nok, når venstre ventrikel kontrakter, åbnes aortaklappen som følge af blodtryk på det, så det bevæger sig ind i aorta. Derefter bidrager den omvendte strøm af blod fra arterien i løbet af diastolen (hjertets afslapningstid) til lukningen af ​​ventilerne.

Normalt har aortaklappen tre folder. Den mest almindelige medfødte anomali i hjertet er bicuspid aortaklappen. Denne patologi forekommer hos 2% af den menneskelige befolkning.

En pulmonal (lungeventil) ventil på tidspunktet for sammentrækning af højre ventrikel tillader blod til at strømme ind i lungekroppen, og under diastolen tillader det ikke at strømme i modsat retning. Består også af tre vinger.

Hjerteskader og koronarcirkulation

Det menneskelige hjerte har brug for mad og ilt, såvel som ethvert andet organ. De fartøjer, der giver (nærende) hjertet med blod kaldes koronar eller koronar. Disse fartøjer afgrener sig fra aorta-basen.

Kardonarterierne forsyner hjertet med blod, de kransåre fjerner det deoxygenerede blod. De arterier, der er på overfladen af ​​hjertet, kaldes epikardiale. Den subendokardiale kaldes koronararterier gemt dybt i myokardiet.

Det meste af udstrømningen af ​​blod fra myokardiet sker gennem tre hjerteårer: stort, mellemt og lille. Danner den koronare sinus, de falder ind i højre atrium. Hjertets forreste og mindre blodårer leverer blod direkte til højre atrium.

Kranspulsårerne er opdelt i to typer - højre og venstre. Sidstnævnte består af anterior interventricular og circumflex arterier. En stor hjerteår forgrener sig i hjernens bageste, midterste og små blodårer.

Selv helt sunde mennesker har deres egne unikke træk ved koronarcirkulationen. I virkeligheden må fartøjerne ikke se og være placeret som vist på billedet.

Hvordan udvikler hjertet (form)?

For dannelsen af ​​alle kroppens systemer kræver fosteret sin egen blodcirkulation. Derfor er hjertet det første funktionelle organ, der opstår i kroppen af ​​et humant embryo. Det forekommer omtrent i den tredje uge af fosterudvikling.

Fosteret i starten er kun en klynge af celler. Men i løbet af graviditeten bliver de mere og mere, og nu er de forbundet og danner i programmerede former. Først dannes to rør, som dernæst smelter sammen. Dette rør folder og rusher ned for at danne en loop - den primære hjertebøjle. Denne sløjfe er fremad i væksten af ​​alle de andre celler og forlænges hurtigt, så ligger til højre (måske til venstre, hvilket betyder at hjertet vil være placeret spejllignende) i form af en ring.

Så normalt den 22. dag efter undfangelsen sker den første sammentrækning af hjertet, og på den 26. dag har fostret sin egen blodcirkulation. Yderligere udvikling involverer forekomsten af ​​septa, dannelsen af ​​ventiler og remodeling af hjertekamrene. Afdelingsformularen ved den femte uge, og hjerteventiler vil blive dannet af den niende uge.

Interessant nok begynder fostrets hjerte at slå med hyppigheden af ​​en almindelig voksen - 75-80 snit pr. Minut. Derefter er pulsen ved begyndelsen af ​​den syvende uge omkring 165-185 slag per minut, hvilket er den maksimale værdi efterfulgt af en afmatning. Pulsen af ​​den nyfødte er i området 120-170 snit pr. Minut.

Fysiologi - princippet om det menneskelige hjerte

Overvej i detaljer hjerteets principper og love.

Hjerte cyklus

Når en voksen er rolig, samler hans hjerte omkring 70-80 cyklusser pr. Minut. Et slag i pulsen svarer til en hjertesyklus. Med en sådan reduktionshastighed tager en cyklus ca. 0,8 sekunder. Af hvilken tid er atriell kontraktion 0,1 sekunder, ventrikler - 0,3 sekunder og afslapningsperiode - 0,4 sekunder.

Cyklens frekvens bestemmes af hjertefrekvensdriveren (den del af hjertemusklen, hvor impulser opstår, der regulerer hjertefrekvensen).

Følgende begreber er kendetegnet:

  • Systole (sammentrækning) - næsten altid betyder dette begreb en sammentrækning af hjertets ventrikler, hvilket fører til blodskub i arterielkanalen og maksimering af tryk i arterierne.
  • Diastol (pause) - den periode, hvor hjertemusklen er i afslapningsfasen. På dette tidspunkt er hjertets kamre fyldt med blod, og trykket i arterierne falder.

Så måling af blodtryk registrerer altid to indikatorer. F.eks. Tallene 110/70, hvad betyder de?

  • 110 er det øvre tal (systolisk tryk), det vil sige blodtrykket i arterierne på tidspunktet for hjerteslag.
  • 70 er det lavere tal (diastolisk tryk), det vil sige blodtrykket i arterierne på tidspunktet for hjertets afslappning.

En simpel beskrivelse af hjertesyklusen:

Hjertesyklus (animation)

På hjertet af afslapning er atrierne og ventriklerne (gennem åbne ventiler) fyldt med blod.

  • Opstår systole (sammentrækning) af atrierne, som giver dig mulighed for helt at flytte blodet fra atria til ventriklerne. Atriel sammentrækning begynder på stedet for tilstrømningen af ​​venerne ind i den, hvilket sikrer den primære kompression af deres mund og blodets manglende evne til at strømme tilbage i venerne.
  • Atria slapper af, og ventilerne adskiller atria fra ventriklerne (tricuspid og mitral) tæt. Opstår ventrikulær systole.
  • Ventricular systole skubber blod i aorta gennem venstre ventrikel og ind i lungearterien gennem højre ventrikel.
  • Herefter kommer en pause (diastole). Cyklusen gentages.
  • Konventionelt er der for to pulsslag to hjerteslag (to systoler) - først atrierne og derefter reduceres ventriklerne. Ud over ventrikulær systole er der atrielsystolen. Atriens sammentrækning bærer ikke værdi i hjerteets målte arbejde, da i dette tilfælde er afslapningstiden (diastol) tilstrækkelig til at fylde ventriklerne med blod. Men når hjertet begynder at slå oftere, bliver atrielle systole afgørende - uden det ville ventriklerne simpelthen ikke have tid til at fylde med blod.

    Blodtrykket gennem arterierne udføres kun, når ventriklerne er reduceret, disse push-sammentrækninger kaldes pulsen.

    Hjertemuskel

    Den unikke hjerte muskel ligger i sin evne til rytmiske automatiske sammentrækninger, vekslende med afslapning, som finder sted kontinuerligt i hele livet. Myokardiet (midtermuskulaturlaget i hjertet) af atrierne og ventriklerne er delt, hvilket gør det muligt for dem at indgå adskilt fra hinanden.

    Kardiomyocytter er hjertets muskelceller med en speciel struktur, som tillader at transmittere en bølge af excitation på en særlig koordineret måde. Så der er to typer af cardiomyocytter:

    • Almindelige arbejdstagere (99% af det samlede antal hjerte muskelceller) er designet til at modtage et signal fra en pacemaker ved hjælp af kardiomyocytter.
    • specielt ledende (1% af det totale antal hjerte muskelceller) kardiomyocytter danner ledningssystemet. I deres funktion ligner de neuroner.

    Ligesom skelets muskler er hjertemusklen i stand til at øge i volumen og øge effektiviteten af ​​sit arbejde. Hjertevolumenet af udholdenhedsudøvere kan være 40% større end for en almindelig person! Dette er en nyttig hypertrofi i hjertet, når den strækker sig og er i stand til at pumpe mere blod i et slag. Der er en anden hypertrofi - kaldet "sports hjerte" eller "tyr hjerte."

    Den nederste linje er, at nogle atleter øger muskelens masse, snarere end dets evne til at strække og skubbe igennem store mængder blod. Årsagen til dette er uansvarlige kompilerede træningsprogrammer. Absolut enhver fysisk træning, især styrke, bør bygges på basis af cardio. Ellers forårsager overdreven fysisk anstrengelse på et uforberedt hjerte myokardie dystrofi, hvilket fører til tidlig død.

    Hjerteledningssystem

    Hjertets ledende system er en gruppe af specielle formationer bestående af ikke-standardiserede muskelfibre (ledende kardiomyocytter), som tjener som en mekanisme til at sikre hjertesystemets harmoniske arbejde.

    Impulsbane

    Dette system sikrer hjerteautomatikken - excitering af impulser født i kardiomyocytter uden ekstern stimulering. I et sundt hjerte er den primære kilde til impulser sinusnoden (sinusnoden). Han leder og overlapper impulser fra alle andre pacemakere. Men hvis en sygdom opstår, der fører til syg sinus syndrom, overtager andre dele af hjertet sin funktion. Så atrioventrikulær knudepunkt (automatisk rækkevidde af den anden rækkefølge) og bunden af ​​His (tredje ordens AC) kan aktiveres, når sinusknudepunktet er svagt. Der er tilfælde, hvor de sekundære knuder forbedrer deres egen automatisme og under normal drift af sinusknudepunktet.

    Bihuleknuden er placeret i den højre bakkvands øverste bagvæg i umiddelbar nærhed af mundingen af ​​den overlegne vena cava. Denne knude initierer pulser med en frekvens på ca. 80-100 gange pr. Minut.

    Atrioventrikulær knudepunkt (AV) er placeret i den nedre del af højre atrium i det atrioventrikulære septum. Denne partition forhindrer spredningen af ​​impulser direkte ind i ventriklerne, omgå AV-noden. Hvis sinusknudepunktet svækkes, vil atrioventrikulatet overtage sin funktion og begynde at overføre impulser til hjertemusklen med en frekvens på 40-60 sammentrækninger pr. Minut.

    Dernæst passerer den atrioventrikulære knude i bunden af ​​His (atrioventrikulær bundt er opdelt i to ben). Det højre ben ryster til højre ventrikel. Venstre ben er opdelt i to halvdele.

    Situationen med Hans venstre bund er ikke fuldt ud forstået. Det antages, at venstrebenet fibre i den forreste gren ryster til den forreste og laterale væg i venstre ventrikel, og den bageste gren fibrer bagvæggen af ​​venstre ventrikel og de nederste dele af sidevæggen.

    I tilfælde af sinusknudehedens svaghed og atrioventrikulærens blokade kan hans bundt skabe pulser med en hastighed på 30-40 pr. Minut.

    Ledningssystemet uddyber og forgrener sig derefter ud i mindre grene og omsider vender sig til Purkinje-fibre, som gennemsyrer hele myokardiet og tjener som transmissionsmekanisme til sammentrækning af musklerne i ventriklerne. Purkinje-fibre er i stand til at initiere impulser med en frekvens på 15-20 pr. Minut.

    Ekstrauddannede atleter kan have en normal hjertefrekvens i ro op til det laveste optagne nummer - kun 28 hjerteslag pr. Minut! Men for den gennemsnitlige person, selv om det fører til en meget aktiv livsstil, kan pulsfrekvensen under 50 slag pr. Minut være et tegn på bradykardi. Hvis du har en så lav puls, bør du undersøge af en kardiolog.

    Hjerterytme

    Hjertefrekvensen for en nyfødt kan være omkring 120 slag pr. Minut. Ved opvæksten stabiliseres pulsen hos en almindelig person i området fra 60 til 100 slag pr. Minut. Veluddannede atleter (vi taler om personer med veluddannede kardiovaskulære og respiratoriske systemer) har en puls på 40 til 100 slag pr. Minut.

    Hjertets rytme styres af nervesystemet - den sympatiske styrker sammentrækningerne, og den parasympatiske svækker.

    Hjerteaktiviteten afhænger i et vist omfang af indholdet af calcium og kaliumioner i blodet. Andre biologisk aktive stoffer bidrager også til regulering af hjerterytme. Vores hjerte kan begynde at slå oftere under påvirkning af endorfiner og hormoner, der udskilles, når du lytter til din yndlingsmusik eller kys.

    Endvidere kan det endokrine system have en signifikant indvirkning på hjertefrekvensen - og på hyppigheden af ​​sammentrækninger og deres styrke. For eksempel forårsager frigivelsen af ​​adrenalin ved binyrerne en stigning i hjertefrekvensen. Det modsatte hormon er acetylcholin.

    Hjertetoner

    En af de nemmeste metoder til diagnosticering af hjertesygdom lytter til brystet med et stethofonendoskop (auskultation).

    I et sundt hjerte, når man udfører standard auscultation, høres kun to hjertelyde - de kaldes S1 og S2:

    • S1 - lyden høres, når de atrioventrikulære (mitral og tricuspid) ventiler lukkes under systole (sammentrækning) af ventriklerne.
    • S2 - lyden, der laves ved lukning af semilunar- (aorta- og lungeventilerne) ventiler under diastol (afslapning) af ventriklerne.

    Hver lyd består af to komponenter, men for det menneskelige øre fusionerer de ind i en på grund af den meget lille tid mellem dem. Hvis der under normale auskultionsbetingelser bliver yderligere toner hørbare, kan dette tyde på en sygdom i det kardiovaskulære system.

    Nogle gange i hjertet kan der høres yderligere uregelmæssige lyde, som kaldes hjertelyde. Tilstedeværelsen af ​​støj indikerer som regel hjertets patologi. For eksempel kan støj forårsage, at blodet vender tilbage i modsat retning (regurgitation) på grund af forkert drift eller beskadigelse af en ventil. Støj er imidlertid ikke altid et symptom på sygdommen. For at præcisere årsagerne til udseendet af yderligere lyde i hjertet er at lave en ekkokardiografi (ultralyd i hjertet).

    Hjertesygdom

    Ikke overraskende vokser antallet af hjerte-kar-sygdomme i verden. Hjertet er et komplekst organ, der rent faktisk hviler (hvis det kan kaldes hvile) kun i intervallerne mellem hjerteslag. Enhver kompleks og konstant arbejdsmekanisme i sig selv kræver den mest omhyggelige holdning og konstant forebyggelse.

    Bare forestil dig, hvad en uhyre byrde falder på hjertet, i betragtning af vores livsstil og lav kvalitet rigelig mad. Interessant nok er dødsfrekvensen fra hjerte-kar-sygdomme ret høj i højindkomstlande.

    De enorme mængder mad, der forbruges af de velhavende landes befolkning og den uendelige udøvelse af penge, samt de dermed forbundne belastninger, ødelægger vores hjerte. En anden årsag til spredningen af ​​hjerte-kar-sygdomme er hypodynamien - en katastrofalt lav fysisk aktivitet, der ødelægger hele kroppen. Eller tværtimod den analfabetiske lidenskab for tunge fysiske øvelser, der ofte forekommer mod baggrunden for hjertesygdomme, hvis tilstedeværelse folk ikke engang mistænker og formår at dø lige under "sundhed" øvelserne.

    Livsstil og hjertesundhed

    De vigtigste faktorer, der øger risikoen for udvikling af hjerte-kar-sygdomme, er:

    • Fedme.
    • Højt blodtryk
    • Forhøjet blodcholesterol.
    • Hypodynamien eller overdreven motion.
    • Rigelig mad af lav kvalitet.
    • Deprimeret følelsesmæssig tilstand og stress.

    Gør læsningen af ​​denne store artikel et vendepunkt i dit liv - opgive dårlige vaner og ændre din livsstil.

    Anatomi og fysiologi af hjertet: struktur, funktion, hæmodynamik, hjertesyklus, morfologi

    Strukturen af ​​hjertet af enhver organisme har mange karakteristiske nuancer. I processen med fylogenese, det vil sige udviklingen af ​​levende organismer til mere kompleks, erhverver hjerte af fugle, dyr og mennesker fire kamre i stedet for to kamre i fisk og tre kamre i amfibier. En sådan kompleks struktur er bedst egnet til at adskille strømmen af ​​arterielt og venøst ​​blod. Desuden involverer anatomien i det menneskelige hjerte mange af de mindste detaljer, som hver især udfører sine strengt definerede funktioner.

    Hjertet som organ

    Så hjertet er intet andet end et hul organ bestående af specifikt muskelvæv, som udfører motorfunktionen. Hjertet er placeret i brystet bag brystet, mere til venstre, og dets længdeakse er rettet forfra, venstre og nedad. Forsiden af ​​hjertet er omgivet af lungerne, næsten fuldstændigt dækket af dem, hvilket kun efterlader en lille del umiddelbart ved siden af ​​brystet indefra. Grænserne for denne del kaldes ellers absolut kardial sløvhed, og de kan bestemmes ved at trykke på brystvæggen (percussion).

    Hos mennesker med en normal forfatning har hjertet en halv-horisontal position i brysthulen, hos personer med asthenisk forfatning (tynd og høj) er det næsten lodret, og i hypersthenik (tykt, tyndt, med stor muskelmasse) er det næsten vandret.

    Hjertens bagvæg er ved siden af ​​spiserøret og store større skibe (til thoracale aorta, den ringere vena cava). Den nederste del af hjertet er placeret på membranen.

    ekstern struktur af hjertet

    Alder funktioner

    Det menneskelige hjerte begynder at danne sig i den tredje uge af prænatalperioden og fortsætter gennem hele drægtighedsperioden, der går gennem faser fra enkeltkammerhulrummet til hjertekammeret.

    hjerteudvikling i prænatal perioden

    Dannelsen af ​​fire kamre (to atria og to ventrikler) forekommer allerede i de første to måneder af graviditeten. De mindste strukturer er helt dannet til slægten. Det er i de første to måneder, at embryonets hjerte er mest sårbar overfor den negative indflydelse af nogle faktorer på den fremtidige mor.

    Fødtets hjerte deltager i blodbanen gennem kroppen, men det skelnes af blodcirkulationskredsløb - fostret har endnu ikke sin egen vejrtrækning i lungerne, og den "ånder" gennem plasentalt blod. I hjertet af fosteret er der nogle åbninger, der giver dig mulighed for at "slukke" pulmonal blodstrøm fra cirkulationen før fødslen. Under fødslen ledsaget af det første barns første råb og dermed på tidspunktet for øget intrathorak tryk og tryk i barnets hjerte lukkes disse huller. Men dette er langt fra altid at ske, og de kan forblive i barnet, for eksempel et åbent ovalt vindue (ikke forveksles med en sådan defekt som en atriel septalfejl). Et åbent vindue er ikke en hjertefejl, og efterhånden som barnet vokser, bliver det vokset.

    hæmodynamik i hjertet før og efter fødslen

    Et nyfødt barns hjerte har en afrundet form, og dens dimensioner er 3-4 cm i længden og 3-3,5 cm i bredden. I det første år af et barns liv øges hjertet væsentligt i størrelse og mere i længde end i bredden. Massen af ​​hjertet af en nyfødt baby er omkring 25-30 gram.

    Som babyen vokser og udvikler, vokser hjertet også, nogle gange betydeligt forud for selve organismenes udvikling efter alder. Ved en alder af 15 år øges hjertets masse næsten ti gange, og dens volumen stiger mere end fem gange. Hjertet vokser mest intensivt i op til fem år og derefter i løbet af puberteten.

    I en voksen er størrelsen af ​​hjertet omkring 11-14 cm i længden og 8-10 cm i bredden. Mange tror med rette, at størrelsen af ​​hver persons hjerte svarer til størrelsen af ​​hans knyttede knytnæve. Hjertets masse hos kvinder er ca. 200 gram, og hos mænd - ca. 300-350 gram.

    Efter 25 år begynder ændringer i hjertets bindevæv, som danner hjerteventilerne. Deres elastik er ikke den samme som i barndommen og ungdommen, og kanterne kan blive ujævn. Når en person vokser, og så bliver en person ældre, sker der ændringer i alle hjertets strukturer samt i de skibe, der fodrer det (i kranspulsårerne). Disse ændringer kan føre til udvikling af en lang række hjertesygdomme.

    Anatomiske og funktionelle træk i hjertet

    Anatomisk er hjertet et organ divideret med skillevægge og ventiler i fire kamre. De "øvre" to kaldes atria (atrium) og "nedre" to - ventriklerne (ventricles). Mellem højre og venstre atria er det interatriale septum og mellem ventriklerne - interventrikulæret. Normalt har disse partitioner ikke huller i dem. Hvis der er huller, fører dette til blanding af arterielt og venøst ​​blod og følgelig til hypoxi hos mange organer og væv. Sådanne huller kaldes mangler på væggene og er relateret til hjertefejl.

    grundlæggende struktur af hjertekamre

    Grænser mellem de øvre og nedre kamre er atrio-ventrikulære åbninger - venstre, dækket med mitralventilfolier og til højre, dækket med tricuspid-ventilfolier. Septumets integritet og den korrekte funktion af ventilens cusps forhindrer blanding af blodgennemstrømning i hjertet og bidrager til en klar ensrettet bevægelse af blod.

    Aurikler og ventrikler er forskellige - atria er mindre end ventriklerne og mindre vægtykkelse. Så væggen af ​​aurikler udgør kun tre millimeter, en væg i en højre ventrikel - ca. 0,5 cm og venstre - ca. 1,5 cm.

    Atria har små fremspring - ører. De har en ubetydelig sugefunktion til bedre blodindsprøjtning i atriumhulen. Det højre atrium nær hans øre strømmer ind i maven af ​​vena cava og til venstre lungeåre i mængden af ​​fire (mindre ofte fem). Pulmonalarterien (almindeligvis betegnet pulmonal stammen) til højre og aortalampen til venstre strækker sig fra ventriklerne.

    hjertets struktur og dets skibe

    Inde i det øvre og nedre kammer i hjertet er også forskellige og har deres egen karakteristika. Atriens overflade er glattere end ventriklerne. Fra ventilringen mellem atrium og ventrikel stammer tynde bindevævsventiler - bicuspid (mitral) til venstre og tricuspid (tricuspid) til højre. Den anden kant af bladet vender ind i ventriklerne. Men for at de ikke hænger frit, bliver de støttet af tynde senetråder, kaldet akkorder. De er som fjedre, strakte, når lukkerne lukkes og kontrakterne når ventilerne åbnes. Akkorder stammer fra paprikarmuskulaturen i ventrikulærvæggen - bestående af tre i højre og to i venstre ventrikel. Derfor har det ventrikulære hulrum en ujævn og ujævn indre overflade.

    Funktionerne af atria og ventrikler varierer også. På grund af at atrierne skal skubbe blod ind i ventriklerne og ikke i større og længere skibe, skal de overvinde muskelvævets modstand, så atrierne er mindre i størrelse, og deres vægge er tyndere end ventricles. Ventriklerne skubber blod ind i aorta (til venstre) og ind i lungearterien (højre). Kondition er hjertet opdelt i højre og venstre halvdel. Den højre halvdel er kun for strømmen af ​​venet blod, og venstre er for arterielt blod. Det "højre hjerte" er skematisk angivet i blåt og "venstre hjerte" i rødt. Normalt blandes disse strømme aldrig sammen.

    hjerte hæmodynamik

    En hjertesyklus varer ca. 1 sekund og udføres som følger. På tidspunktet for at fylde blodet med atria, slapper deres vægge af - atriel diastol forekommer. Ventiler i vena cava og lungeåre er åbne. Tricuspid og mitral ventiler er lukket. Så strammer atriumvæggene og skubber blodet ind i ventriklerne, tricuspid og mitralventilerne åbnes. På dette tidspunkt forekommer systole (sammentrækning) af atrierne og diastolen (afslapning) af ventriklerne. Når blodet er taget af ventriklerne, lukker tricuspid og mitralventilerne, og aorta og lungearterier ventiler åbnes. Endvidere reduceres ventriklerne (ventrikulær systole), og atria fyldes igen med blod. Der kommer en fælles diastole i hjertet.

    Hjertets hovedfunktion reduceres til pumpen, det vil sige at skubbe et bestemt blodvolumen i aorta med sådant tryk og hastighed, at blodet leveres til de fjerneste organer og til de mindste celler i kroppen. Endvidere skubbes arterielt blod med et højt indhold af ilt og næringsstoffer, der kommer ind i venstre halvdel af hjertet fra lungekarrene (skubbet til hjertet gennem lungerne), skubbes ind i aorta.

    Venøst ​​blod, med lavt indhold af ilt og andre stoffer, indsamles fra alle celler og organer med et system af hule vener og strømmer ind i højre halvdel af hjertet fra de øvre og nedre hule vener. Derefter skubbes venøst ​​blod ud af højre ventrikel ind i lungearterien og derefter ind i lungekarrene for at udføre gasudveksling i lungens alveolier og for at berige med ilt. I lungerne opsamles arterielt blod i lungehornene og venerne og strømmer igen ind i venstre halvdel af hjertet (i venstre atrium). Og så regelmæssigt udfører hjertet blodpumpen gennem kroppen med en frekvens på 60-80 slag per minut. Disse processer betegnes som begrebet "cirkulationer af blodcirkulationen". Der er to af dem - små og store:

    • Den lille cirkel indbefatter strømmen af ​​venøst ​​blod fra højre atrium gennem tricuspidventilen i højre ventrikel - så ind i lungearterien - så ind i lungearterierne - ilt berigelse af blodet i lungealveoli-arteriel blodstrømmen ind i lungernes mindste ader - i lungerne - ind i venstre atrium.
    • Den store cirkel omfatter strømmen af ​​arterielt blod fra venstre atrium gennem mitralventilen i venstre ventrikel - gennem aorta ind i arteriel seng af alle organer - efter gasudveksling i væv og organer bliver blodet venøst ​​(med et højt indhold af carbondioxid i stedet for oxygen) - længere ind i organernes venøse leje - vena cava systemet er i højre atrium.

    Video: Kortets anatomi og hjertesyklus

    Morfologiske træk ved hjertet

    For at fibrene i hjertemusklen skal kunne sammentrækkes synkront, er det nødvendigt at bringe elektriske signaler til dem, hvilket ophidser fibrene. Der ligger en anden kapacitet i hjertet - ledningen.

    Ledningsevne og kontraktilitet er mulig på grund af, at hjertet i den autonome tilstand genererer elektricitet i sig selv. Disse funktioner (automatisme og excitabilitet) leveres af specielle fibre, som er en del af det ledende system. Sidstnævnte er repræsenteret af sinusknudenes elektriske aktive celler, den atrio-ventrikulære knude, bunden af ​​Hans (med to ben - højre og venstre) og Purkinje-fibre. I det tilfælde, hvor en patient har en myokardiel læsion, påvirker disse fibre, udvikler en hjerterytmeforstyrrelse, ellers kaldet arytmi.

    Normalt stammer en elektrisk impuls i cellerne i sinusknudepunktet, som er placeret i området for højre atriale appendage. I en kort periode (ca. en halv millisekund) spredes pulsen gennem det atriale myokardium og går derefter ind i cellerne i det atrio-ventrikulære kryds. Typisk sendes signaler til AV-noden langs tre hovedveje - Wenckenbach, Torel og Bachmann bjælker. I AV-node-celler forlænges pulsoverførelsestiden op til 20-80 millisekunder, og derefter falder pulserne gennem højre og venstre ben (såvel som for- og bagafgreningerne i venstre ben) af His-bundtet til Purkinje-fibre og som følge heraf til arbejdsklartet. Hyppigheden af ​​transmission af pulser i alle veje er lig med hjertefrekvensen og er 55-80 pulser pr. Minut.

    Så, myokardiet eller hjertemusklen er den midterste kappe i hjertets væg. De indre og ydre skaller er bindevæv, og kaldes endokardiet og epicardiet. Det sidste lag er en del af perikardieposen eller hjertet "shirt". Mellem den indre folder af perikardiet og epicardiet dannes der en kavitet fyldt med en meget lille mængde væske for at sikre en bedre glidning af perikardiumets folder ved hjerterytme. Normalt er volumenet af væske op til 50 ml, overskuddet af dette volumen kan indikere perikarditis.

    strukturen af ​​hjertevæggen og skallen

    Blodforsyning og innervering af hjertet

    På trods af at hjertet er en pumpe til at give hele kroppen ilt og næringsstoffer, har den også brug for arterielt blod. I denne henseende har hele væggen i hjertet et veludviklet arterielt netværk, som er repræsenteret ved en forgrening af de kransåbne arterier. Munden af ​​højre og venstre kranspulsårer afviger fra aorta roten og er opdelt i grene, der trænger ind i tykkelsen af ​​hjertevæggen. Hvis disse hovedarterier er tilstoppet med blodpropper og aterosklerotiske plaques, vil patienten udvikle et hjerteanfald, og orgelet vil ikke længere kunne udføre sine funktioner fuldt ud.

    placering af kranspulsårerne, der leverer hjertemusklen (myokardium)

    Den hyppighed, som hjertet slår på, påvirkes af nervefibre, der strækker sig fra de vigtigste nerveledere - vagusnerven og den sympatiske stamme. De første fibre har evnen til at bremse frekvensen af ​​rytmen, sidstnævnte - for at øge hjerterytens frekvens og styrke, det vil sige at virke som adrenalin.

    Afslutningsvis skal det bemærkes, at hjertets anatomi kan have uregelmæssigheder hos de enkelte patienter, og derfor er kun en læge i stand til at bestemme normen eller patologien hos mennesker efter at have gennemført en undersøgelse, som er i stand til at visualisere kardiovaskulærsystemet mest informativt.